Infra – α - Compact and Infra – α - Connected Spaces

Raja Mohammad Latif Department of Mathematics and Natural Sciences Prince Mohammad Bin Fahd University P.O. Box 1664 A1 – Khobar 31952 Saudi Arabia <u>rlatif@pmu.edu.sa; rajamlatif@gmail.com & dr.rajalatif@yahoo.com</u> https://www.pmu.edu.sa/profiles/rlatif/home

Abstract: - In 2016 Hakeem A. Othman and Md. Hanif Page introduced a new notion of set in general topology called an infra- α -open set and investigated its fundamental properties and studied the relationship between $infra - \alpha - open$ set and other topological sets. The objective of this paper is to introduce the new concepts called $infra - \alpha - compact$ space, countably infra – α – Lindelöf infra – α – compact space, space, almost infra – α – compact space, mildly infra $-\alpha$ - compact space and infra- α -connected space in general topology and investigate several properties and characterizations of these new concepts in topological spaces.

Key-Words:-	Topol	ogical	space,	open	set,	
generalized	open	set,	inf ra –	α-oper	n set,	
infra – α – compact space,			countably			
infra – α – compact space,						
infra-a-Li	almost					
infra – α – compact space,				mildly		
$infra - \alpha - coe$	mpact s	pace,				
$infra - \alpha - co$	nnected	space.				

I. INTRODUCTION

The concept of supra topology was introduced by A. S. Mashhour et al [12] in the year 1983. They studied about s-continuous functions and s*-continuous functions. In 2008, R. Devi et al [5] introduced the concept of supra α – open sets and supra α – continuous maps. Jamal. M. Mustafa [14] studied about supra b-compact and supra b-Lindelof spaces. Vidyarani et al in [26] introduced the concept of supra N-compact, countably supra N-compact, supra N-Lindelof and supra and investigated N-connectedness about their relationships using the concept of continuity. In 2013, Missier and Rodrigo introduced new class of set in general topology called an α -open (supra α -open) set. In 2016, Hakeem A. Othman and Md. Hanif Page defined a new class of sets in general topology called an *infra* – α – *open* set and investigated its fundamental studied the relation properties and between infra – α – open set and other topological sets. In this paper we introduce the new concepts called countably $infra - \alpha - compact$ space, $infra - \alpha - compact$ space, $infra - \alpha - Lindeloff$ space, almost $infra - \alpha - compact$ space, mildly $infra - \alpha - compact$ space and $infra - \alpha - connected$ space in general topology and investigate several properties and characterization of these new concepts.

Throughout this paper (X, τ) or simply by X we denote topological space on which no separation axioms are assumed unless explicitly stated and

 $f:(X, \tau) \longrightarrow (Y, \sigma)$ means a mapping f from a topological space X to a topological space Y. If U is a set and x is a point in X, then N(x), Int(U), Cl(U) and U^c denote respectively, the neighbourhood system of x, the interior of U, the closure of U and complement of U.

II. PRELIMINARIES

Definition 2.1. A subset A of topological space (X, τ) is called a generalized closed set (briefly, g-closed) if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X and generalized open if A^c is g-closed set in X.

We characterize g-closed sets.

Theorem 2.2. A set A in a topological space (X, τ) is g-closed if and only if Cl(A)-A contains no non empty closed set.

Definition 2.3. Let (X, τ) be a topological space. Let $A \subseteq X$. Then we define *closure*^{*} and *interior*^{*}. $Cl^*(A) = I \{G : A \subseteq G \& G \text{ is generalized closed set}\}$ is called *closure*^{*}. Int^{*}(A) = U $\{G : G \subseteq A \& G \text{ is generalized open set}\}$ is called *interior*^{*}.

Lemma 2.4. Let (X, τ) be a topological space and suppose *A* be any subset of *X*. Then $(1).A \subseteq Cl^*(A) \subseteq Cl(A).$

$$(2).Int(A) \subseteq Int^*(A) \subseteq A.$$

Definition 2.5. A subset *A* of space *X* is called $infra - \alpha - open$ ($infra - \alpha - closed$) set if $A \subseteq Int \lfloor Cl^*(Int(A)) \rfloor$ ($Cl \lfloor Int^*(Cl(A)) \rfloor \subseteq A$). The class of all $infra - \alpha - open$ ($infra - \alpha - closed$) sets in *X* will be denoted as $I\alpha - O(X) (I\alpha - C(X))$.

Definition 2.6. Let (X, τ) be a topological space and let A be a subset of X. Then we have, *. $I\alpha - Cl(A) = I\{F : A \subseteq F, F \in I\alpha - C(X)\}$ is called an *infra* - α - *closure*. **. $I\alpha - Int(A) = U\{U : U \subseteq A, U \in I\alpha - O(X)\}$

is called an *infra* – α – *intetrier*.

Theorem 2.7. Let (X, τ) be a topological space. Then a set $A \in I\alpha - O(X)$ if and only if there exists an open set U such that $U \subseteq A \subseteq Int |Cl^*(U)|$.

Proof. Necessity : Suppose that $A \in I\alpha - O(X)$. Then $A \subseteq Int \lfloor Cl^*(Int(A)) \rfloor$. Put U = Int(A), then U is an open set and $U \subseteq A \subseteq Int \mid Cl^*(U) \mid$.

Sufficiency: Let *U* be an open set such that $U \subseteq A \subseteq Int \lfloor Cl^*(U) \rfloor$, this implies that $Int \lfloor Cl^*(U) \rfloor \subseteq Int \lfloor Cl^*(Int(A)) \rfloor$, then $A \subseteq Int \lceil Cl^*(Int(A)) \rceil$.

Theorem 2.8. A set $A \in I\alpha - C(X)$ if and only if there exists a closed set F such that $Cl\lfloor Int^*(F)\rfloor \subseteq A \subseteq F$.

Proof. Necessity : If $A \in I\alpha - C(X)$, then $Cl[Int^*(Cl(A))] \subseteq A$. Put F = Cl(A), then F is a closed set and $Cl|Int^*(F)| \subseteq A \subseteq F$.

Sufficiency: Let *F* be a closed set such that $Cl\lfloor Int^*(F)\rfloor \subseteq A \subseteq F$, this implies that $Cl\lfloor Int^*(Cl(A))\rfloor \subseteq Cl\lfloor Int^*(F)\rfloor$, then $Cl\lfloor Int^*(Cl(A))\rfloor \subseteq A$.

Theorem 2.9. Let A be a subset of a space X. Then the following statements hold.

(*i*) If $A \subseteq B \subseteq Int \lfloor Cl^*(A) \rfloor$ and $A \in I\alpha - O(X)$, then $B \in I\alpha - O(X)$. (*ii*) $Cl \lfloor Int^*(A) \rfloor \subseteq B \subseteq A$ and $A \in I\alpha - C(X)$, then $B \in I\alpha - C(X)$,

Proof. (*i*) Let $A \in I\alpha - O(X)$, then there exists U an open set such that $U \subseteq A \subseteq Int |Cl^*(U)|$,

this implies that $U \subseteq B$ and $A \subseteq Int \lfloor Cl^*(U) \rfloor$. Therefore, $Int \lfloor Cl^*(A) \rfloor \subseteq Int \lfloor Cl^*(U) \rfloor$ and $U \subseteq B \subseteq Int \lfloor Cl^*(U) \rfloor$, then $B \in I\alpha - O(X)$,

(ii) Easy to prove by using the same technique of proof (i).

Proposition 2.10. Let *A* and *B* be the sets in *X* and $A \subseteq B$. Then, the following statements hold:

1. $I\alpha - Int(A)$ is the largest *infra* - α - open set contained in A.

2. $I\alpha - Int(A) \subseteq A$.

3. $I\alpha - Int(A) \subseteq I\alpha - Int(B)$. 4. $I\alpha - Int(I\alpha - Int(A)) = I\alpha - Int(A)$. 5. $A \in I\alpha - O(X) \Leftrightarrow I\alpha - Int(A) = A$.

Proposition 2.11. Let A and B be the sets in X and $A \subseteq B$. Then, the following statements hold:

1. $I\alpha - Cl(A)$ is the smallest *infra* - α - *closed* set containing *A*.

2.
$$A \subseteq I\alpha - Cl(A)$$
.
3. $I\alpha - Cl(A) \subseteq I\alpha - Cl(B)$.
4. $I\alpha - Cl(I\alpha - Cl(A)) = I\alpha - Cl(A)$.
5. $A \in I\alpha - C(X) \Leftrightarrow I\alpha - Cl(A) = A$.

Theorem 2.12. Let A be a set of X. Then, the following properties are true:

(a)
$$[I\alpha - Int(A)]^c = I\alpha - Cl(A).$$

(b) $[I\alpha - Cl(A)]^c = I\alpha - Int(A).$
(c) $I\alpha - Int(A) \subseteq AI$ $Int[Cl^*(Int(A))].$
(d) $I\alpha - Cl(A) \supseteq AUCl[Int^*(Cl(A))].$

Corollary 2.13. Let A be a set of X. Then, the following properties are true:

(a) If A is an open set, then

$$I\alpha - Int(A) \subseteq Int[Cl^*(Int(A))].$$

(b) $I\alpha - Cl(A) \supseteq Cl[Int^*(Cl(A))].$

Theorem 2.14. Let (X, τ) be a topological space. Then the following assertions are true: (a) The arbitrary union of $infra - \alpha - open$ sets is an $infra - \alpha - open$ set.

(b) The arbitrary intersection of $infra - \alpha - closed$ sets is an $infra - \alpha - closed$ set.

Proof. Let $\{U_i : i \in I\}$ be a family of *infra*- α -*open* sets. Then, for each $i \in I$, $U_i \subseteq Int[Cl^*(Int(U_i))]$ and

$$\bigcup_{i\in I} U_i \subseteq \bigcup_{i\in I} Int \Big[Cl^* \Big(Int \big(U_i \big) \Big) \Big] \subseteq Int \Big[Cl^* \Big(Int \Big(\bigcup_{i\in I} U_i \Big) \Big) \Big].$$

Hence $U\{U_i : i \in I\}$ is an *infra* $-\alpha$ - open set. (b) Obvious.

Theorem 2.15. Let A be a set of X. Then the following statement holds:

$$Int^{*}(A) \subseteq I\alpha - Int(A) \subseteq A \subset I\alpha - Cl(A) \subseteq Cl^{*}(A).$$

Proof. We know that $Int^*(A) \subseteq A$, this implies that $I\alpha - Int \lfloor Int^*(A) \rfloor \subseteq I\alpha - Int(A)$. Then, $I\alpha - Int \lfloor Int^*(A) \rfloor = Int^*(A)$ and so, $Int^*(A) \subseteq I\alpha - Int(A) \longrightarrow (*)$.

Also, we know that $A \subseteq Cl^*(A)$, this implies that $I\alpha - Cl(A) \subseteq I\alpha - Cl \lfloor Cl^*(A) \rfloor$. Then, $I\alpha - Cl \mid Cl^*(A) \mid = Cl^*(A)$ and so,

 $I\alpha - Cl(A) \subseteq Cl^*(A) \longrightarrow (**).$

From (* and (**), it follows that $Int^*(A) \subseteq I\alpha - Int(A) \subseteq A \subset I\alpha - Cl(A) \subseteq Cl^*(A).$

Definition 2.16. A set $A \subseteq X$ is called an α -open [15] A (Semiopen[10]) set if $A \subseteq Int \lfloor Cl(Int(A)) \rfloor$ ($A \subseteq Cl \lfloor Int(A) \rfloor$). The collection of all α -open (semi open) sets of X is denoted as $\alpha O(X)$ (SO(X)).

Theorem 2.17. Let A be a set of a topological space X. Then the following statements hold:

Volume 8, 2021

(a) If A is an open (closed) set, then A is an $infra - \alpha - open (infra - \alpha - closed)$ set. (b) If A is an $infra - \alpha - open (infra - \alpha - closed)$ set, then A is an $\alpha - open (\alpha - closed)$ set.

Remark 2.18. Let (X, τ) be a topological Space. Then the following relation holds for subsets of *X*. *Open Set* \rightarrow *Infra* $-\alpha$ *-Open* $\rightarrow \alpha$ *-Open* \rightarrow *Semi-Open* **Definition 2.19.** A mapping $f:(X, \tau) \longrightarrow (Y, \sigma)$ is said to be an *infra* $-\alpha$ *-continuous* if $f^{-1}(V)$ is an *infra* $-\alpha$ *-open* (*infra* $-\alpha$ *-closed*) set in *X* for each open (closed) set *V* in *Y*. **Definition 2.20.** A mapping

 $f:(X,\tau) \longrightarrow (Y,\sigma) \text{ is said to be an}$ $infra - \alpha - irresolute \quad \text{if} \qquad f^{-1}(V) \quad \text{is an}$ $infra - \alpha - open \quad (infra - \alpha - closed) \quad \text{set in } X \text{ for}$ $X \quad \text{each } infra - \alpha - open \quad (infra - \alpha - closed) \quad \text{set}$ V in Y.

Definition 2.21. A mapping $f:(X, \tau) \longrightarrow (Y, \sigma)$ is said to be an *infra*- α -*open* (*infra*- α -*closed*) if f(U) is an *infra*- α -*open* (*infra*- α -*closed*) set in Y for each open (closed) set U in X.

Definition 2.22. A set $A \subseteq X$ is said to be *infra* $-\alpha$ *- connected* if *A* cannot be written as the union of two *infra* $-\alpha$ *- separated* sets.

Definition 2.23. Let *X* be any nonempty set and $\tau \subseteq P(X)$. We say that τ is a supra topology on *X* if $\phi, X \in \tau$ and τ is closed under arbitrary union. The pair (X, τ) is called supra topological space. The elements of τ are called supra open sets in (X, τ) and complement of a supra open set is called a supra closed set.

Definition 2.24. A supra topological space is called supra compact (S – compact) if and only if every supra open cover of X has a finite sub cover. **Definition 2.25.** A function $f:(X, \tau) \longrightarrow (Y, \sigma)$ is called perfectly

infra – α – continuous if the inverse image $f^{-1}(V)$ of every infra – α – open set V of Y is both open and closed in X.

Definition 2.26. A function $f:(X, \tau) \longrightarrow (Y, \sigma)$ is called strongly *infra*- α -*continuous* if the inverse image $f^{-1}(V)$ of every *infra*- α -*open* V in Y is open in X.

Definition 2.27. Let X be a non-empty set. The subfamily $\mu \subseteq P(X)$ is said to be a supra topology on X if $\phi, X \in \mu$ and μ is closed under arbitrary unions. The pair (X, μ) is called a supra topological space. The elements of μ are said to be supra open in (X, μ) . Complement of supra open sets are called supra closed sets.

III. INFRA - α -COMPACT SPACES

Definition 3.1. A collection $\{A_i : i \in I\}$ of *infra* $-\alpha$ *-open* sets in a topological space (X, τ) is called an *infra* $-\alpha$ *-open* cover of a subset *B* of *X* if $B \subseteq U\{A_i : i \in I\}$ holds.

Definition 3.2. A topological space (X, τ) is called *infra* $-\alpha$ *-compact* if every *infra* $-\alpha$ *-open* cover of X has a finite sub cover.

Definition 3.3. A subset *B* of a topological space (X, τ) is said to be *infra* – α – *compact* relative to (X, τ) if, for every collection $\{A_i : i \in I\}$ of *infra* – α – *open* subsets of *X* such that $B \subseteq U\{A_i : i \in I\}$ there exists a finite subset I_0 of *I* such that $B \subseteq U\{A_i : i \in I\}$ there I_0 .

Definition 3.4. A subset *B* of a topological space (X, τ) is said to be *infra* $-\alpha$ *-compact* if *B* is *infra* $-\alpha$ *-compact* as a subspace of *X*.

Theorem 3.5. Every *infra* $-\alpha$ *-compact* space is compact.

Proof. Let $\{A_i : i \in I\}$ be an open cover of (X, τ) . Since every open set in X is *infra* $-\alpha$ -*open* in

X.So $\{A_i : i \in I\}$ is an *infra* $-\alpha$ - open cover of (X, τ) . Since (X, τ) is infra- α -compact, infra – α – open cover $\{A_i : i \in I\}$ of (X, τ) has a finite sub cover say $\{A_i : i = 1, 2, 3, ..., n\}$ for X. Hence (X, τ) is a compact space.

Theorem 3.6. Every *infra* $-\alpha$ *-closed* subset of $infra - \alpha - compact$ space (X, τ) is an infra – α – compact relative to X.

Proof. Let A be an *infra* $-\alpha$ *-closed* closed subset of a topological space (X, τ) . Then A^c is infra – α – open in (X, τ) . Let $\Gamma = \{A_i : i \in I\}$ be an infra – α – open cover of A by infra – α – open subsets of (X, τ) . Then $\Gamma^* = \Gamma \cup \{A^c\}$ is an infra – α – open cover of (X, τ) . That is $X = (\bigcup_{i \in I} A_i) \cup A^c$. By hypothesis (X, τ) is an infra – α – compact space and hence Γ^* is reducible to a finite sub cover of (X, τ) say $X = \left(\bigcup_{i \in I_0} A_i\right) \bigcup A^c$ for some finite subset I_0 of I. and But A A^{c} are disjoint. Hence $A \subseteq U\{A_i : i \in I_0\}$. Thus *infra* – α – open cover $\Gamma = \{A_i : i \in I\}$ of A contains a finite sub cover. Hence A is infra – α – compact relative to (X, τ) . **Theorem 3.7.** An *infra* $-\alpha$ *-continuous* image of an *infra* $-\alpha$ *-compact* space is compact.

Proof. Let $f: (X, \tau) \longrightarrow (Y, \sigma)$ be an $infra - \alpha - continuous$ from map an infra – α – compact (X, τ) onto a topological space (Y, σ) . Let $\Gamma = \{A_i : i \in I\}$ be an open cover of Y. Therefore $f^{-1}(\Gamma) = \{f^{-1}(A_i) : i \in I\}$ is an cover of Χ, $infra - \alpha - open$ as f is is X $infra - \alpha - continuous.$ Since infra – α – compact, the infra – α – open cover $f^{-1}(\Gamma) = \{f^{-1}(A_i) : i \in I\}$ of X, has a finite sub cover say $\{f^{-1}(A_i): i = 1, 2, 3, ..., n\}$. Therefore

 $X = \bigcup_{i=1}^{n} f^{-1}(A_i),$ which implies $Y = f(X) = \bigcup_{i=1}^{n} A_i$. That is $\{A_i : i = 1, 2, 3, ..., n\}$ is a finite sub cover of $\Gamma = \{A_i : i \in I\}$. Hence (Y, σ) is compact.

Suppose that function Theorem 3.8. а $f:(X,\tau)\longrightarrow(Y,\sigma)$ is infra- α -irresolute and a subset S of X is infra $-\alpha$ -compact relative to $(X, \tau),$ then the image f(S)is infra – α – compact relative to (Y, σ).

Proof. Let $\Gamma = \{A_i : i \in I\}$ be a collection of infra – α – open cover of (Y, σ) , such that $f(S) \subseteq \mathbf{U}\{A_i : i \in I\}.$ Since is infra – α – irresolute. So $S \subseteq U\{f^{-1}(A_i) : i \in I\}$, where $\{f^{-1}(A_i): i \in I\} \subseteq I\alpha - O(X, \tau)$. Since S is infra – α – compact relative to (X, τ), there exists finite sub collection $\{f^{-1}(A_1), f^{-1}(A_2), \dots, f^{-1}(A_n)\}$ such that $S \subseteq U\{f^{-1}(A_1), f^{-1}(A_2), \ldots, f^{-1}(A_n)\}.$ That is $f(S) \subseteq \mathbf{U}\{A_1, A_2, \dots, A_n\}.$ Hence f(S)is infra – α – compact relative to (*Y*, σ).

Theorem 3.9. Suppose that а map $f:(X,\tau)\longrightarrow(Y,\sigma)$ is strongly infra – α – continuous map from a compact space (X, τ) onto a topological space (Y, σ) , then (Y, σ) is infra- α -compact.

Proof. Let $\{A_i : i \in I\}$ be an *infra* $-\alpha$ *-open* cover of $(Y, \sigma).$ Since is f strongly infra – α – continuous, $\{f^{-1}(A_i): i \in I\}$ is an open cover of (X, τ) . Again, since (X, τ) is compact, the open cover $\{f^{-1}(A_i): i \in I\}$ of (X, τ) has a finite sub cover say $\{f^{-1}(A_i): i = 1, 2, 3, ..., n\}$. Therefore $X = U \{ f^{-1}(A_i) : i = 1, 2, 3, ..., n \},$ which implies $f(X) = U\{A_i : i = 1, 2, 3, ..., n\},\$ so that

 $Y = U\{A_i : i = i = 1, 2, 3, ..., n\}.$ That is $\{A_1, A_2, \dots, A_n\}$ is a finite sub cover of $\{A_i : i \in I\}$ for (Y, σ) . Hence (Y, σ) is *infra*- α -compact. **Theorem 3.10.** Suppose that а map $f:(X,\tau)\longrightarrow(Y,\sigma)$ is perfectly infra – α – continuous map from a compact space (X, τ) onto a topological space (Y, σ) . Then (Y, σ) is infra $-\alpha$ - compact.

Proof. Let $\{A_i : i \in I\}$ be an $infra - \alpha - open$ cover of (Y, σ) . Since f is perfectly $infra - \alpha - continuous$, $\{f^{-1}(A_i) : i \in I\}$ is an open cover of (X, τ) . Again, since (X, τ) is compact, the open cover $\{f^{-1}(A_i) : i \in I\}$ of (X, τ) has a finite sub cover say $\{f^{-1}(A_i) : i = 1, 2, 3, ..., n\}$. Therefore $X = U\{f^{-1}(A_i) : i = 1, 2, 3, ..., n\}$, which implies $f(X) = U\{A_i : i = 1, 2, 3, ..., n\}$, so that $Y = U\{A_i : i = 1, 2, 3, ..., n\}$. That is $\{A_1, A_2, ..., A_n\}$ is a finite sub cover of $\{A_i : i \in I\}$ for (Y, σ) . Hence (Y, σ) is $infra - \alpha - compact$.

Theorem 3.11. Suppose that a function $f:(X, \tau) \longrightarrow (Y, \sigma)$ is $infra - \alpha - irresolute$ map from an $infra - \alpha - compact$ space (X, τ) onto a topological space (Y, σ) . Then (Y, σ) is $infra - \alpha - compact$.

 $f:(X,\tau)\longrightarrow(Y,\sigma)$ **Proof**. Let be an $infra - \alpha - irresolute$ from map an $infra - \alpha - compact$ space **(***X*, **τ)** onto а topological space (Y, σ) . Let $\{A_i : i \in I\}$ be an $(Y, \sigma).$ $infra - \alpha - open$ cover of Then $\{f^{-1}(A_i): i \in I\}$ is an *infra* $-\alpha$ - open cover of (X, τ) , since f is infra- α -irresolute. As (X, τ) is infra- α -compact, the infra- α -open cover $\{f^{-1}(A_i): i \in I\}$ of (X, τ) has a finite sub

cover say $\{f^{-1}(A_i): i = 1, 2, 3, ..., n\}$. Therefore $X = U\{f^{-1}(A_i): i = 1, 2, 3, ..., n\}$, which implies $f(X) = U\{A_i: i = 1, 2, 3, ..., n\}$, so that $Y = U\{A_i: i = 1, 2, 3, ..., n\}$. That is $\{A_1, A_2, ..., A_n\}$ is a finite sub cover of $\{A_i: i \in I\}$ for (Y, σ) . Hence (Y, σ) is *infra* $-\alpha$ - *compact*.

Theorem 3.12. If (X, τ) is compact and every *infra* $-\alpha$ *-closed* set in X is also closed in X, then (X, τ) is *infra* $-\alpha$ *-compact*.

Proof. Let $\{A_i : i \in I\}$ be an *infra* $-\alpha$ *- open* cover of X. Since every *infra* $-\alpha$ *- closed* set in X is also closed in X. Thus $\{X - A_i : i \in I\}$ is a closed cover of X and hence $\{A_i : i \in I\}$ is an open cover of X. Since (X, τ) is compact. So there exists a finite sub cover $\{A_i : i = 1, 2, 3, ..., n\}$ of $\{A_i : i \in I\}$ such that $X = U\{A_i : i = 1, 2, 3, ..., n\}$. Hence (X, τ) is *infra* $-\alpha$ *- compact*.

Theorem 3.13. A topological space (X, τ) is *infra*- α -*compact* if and only if every family of *infra*- α -*closed* sets of (X, τ) having finite intersection property has a non empty intersection. **Proof.** Suppose (X, τ) is *infra*- α -*compact*,

Let $\{A_i : i \in I\}$ be a family of *infra* $-\alpha$ *-closed* sets with finite intersection property. Suppose $X - \mathbf{I}\left(\left\{A_i : i \in I\right\}\right) = X.$ $\mathbf{I} \quad A_i = \phi,$ then This implies $\mathbf{U}\{(X - A_i) : i \in I\} = X$. Thus the cover $\{(X - A_i) : i \in I\}$ is an *infra* - α - open cover of (X, τ) . Then as (X, τ) is infra- α -compact, the $infra - \alpha - open$ cover $\{(X - A_i) : i \in I\}$ has a finite sub cover say $\{(X - A_i) : i = 1, 2, 3, ..., n\}$. This implies that $X = U\{(X - A_i): i = 1, 2, 3, ..., n\}$ which $X = X - I \{A_i : i = 1, 2, 3, ..., n\},\$ implies which implies $X - X = X - |X - I| \{A_i : i = 1, 2, 3, ..., n\}|$

 $\phi = I \{A_i : i = 1, 2, 3, ..., n\}.$ which implies This disproves the assumption. Hence I $\{A_i : i \in I\} \neq \phi$. Conversely, suppose (X, τ) is not there infra – α – compact. Then exits an infra – α – open cover of (X, τ) say $\{G_i : i \in I\}$ having no finite sub cover. This implies for any $\{G_i: i = 1, 2, 3, ..., n\}$ finite sub family of $\{G_i : i \in I\}$, we have $\bigcup \{G_i : i = 1, 2, 3, ..., n\} \neq X$, which implies $X - (U\{G_i : i = 1, 2, 3, ..., n\}) \neq X - X$, therefore

I $\{X - G_i : i = 1, 2, 3, ..., n\} \neq \phi$. Then the family $\{X - G_i : i \in I\}$ of *infra* - α - *closed* sets has a finite intersection property. Also by assumption $I \{X - G_i : i \in I\} \neq \phi$ which implies $X - (U\{G_i : i \in I\}) \neq \phi$, so that $U\{G_i : i \in I\} \neq X$. This implies $\{G_i : i \in I\}$ is not a cover of (X, τ) . This disproves the fact that $\{G_i : i \in I\}$ is a cover for (X, τ) . Therefore an *infra*- α -open cover $\{G_i : i \in I\}$ of (X, τ) has a finite sub cover $\{G_i: i = 1, 2, 3, ..., n\}.$ Hence (X, τ) is infra – α – compact.

Theorem 3.14. Let A be an *infra* $-\alpha$ *-compact* set relative to a topological space X and B be an *infra* $-\alpha$ *-closed* subset of X. Then AI B is *infra* $-\alpha$ *-compact* relative to X.

Proof. Let A be $infra - \alpha - compact$ relative to X. Let $\{A_i : i \in I\}$ be a cover of AI B by $infra - \alpha - open$ sets in X. Then $\{A_i : i \in I\} \cup \{B^C\}$ is a cover of A by $infra - \alpha - open$ sets in X, but A is $infra - \alpha - compact$ relative to X, so there exists a finite subset $I_0 = \{i_1, i_2, i_3, \dots, i_n\} \subseteq I$ such that $A \subseteq (\bigcup \{A_{i_k} : k = 1, 2, 3, \dots, n\}) \cup B^C$. Then AI $B \subseteq \bigcup \{A_{i_k} \ I \ B : k = 1, 2, 3, \dots, n\} \subseteq U$ $\bigcup \{A_{i_k} : k = 1, 2, 3, \dots, n\} \subseteq I$ such that $a = (\bigcup \{A_{i_k} \ I \ B : k = 1, 2, 3, \dots, n\}) \subseteq I$ such that $a = (\bigcup \{A_{i_k} \ I \ B : k = 1, 2, 3, \dots, n\}) \subseteq I$ such the there are the transformed of tr Volume 8, 2021

Theorem 3.15. Suppose that a function $f:(X, \tau) \longrightarrow (Y, \sigma)$ is *infra* $-\alpha$ *-irresolute* and a subset *B* of *X* is *infra* $-\alpha$ *-compact* relative to *X*. Then f(B) is *infra* $-\alpha$ *-compact* relative to *Y*.

Proof. Let $\{A_i : i \in I\}$ be a cover of f(B) by *infra* $-\alpha$ *-open* subsets of *Y*. Since f is infra – α – irresolute. Then $\{f^{-1}(A_i): i \in I\}$ is a cover of B by infra $-\alpha$ - open subsets of X. Since B is *infra* $-\alpha$ *-compact* relative to X, $\{f^{-1}(A_i): i \in I\}$ has a finite sub cover say $\{f^{-1}(A_1), f^{-1}(A_2), \dots, f^{-1}(A_n)\}$ for *B*. Then it implies that $\{A_i : i = 1, 2, 3, ..., n\}$ is a finite sub cover of $\{A_i : i \in I\}$ for f(B). So f(B)is $infra - \alpha - compact$ relative to Y.

Definition 3.16. Let (X, τ) be a topological space and let *E* be a subset of *X*. Let $\tau_E^{i\alpha} = \{AI \ E : A \in I\alpha - O(X, \tau)\}$. Then $(E, \tau_E^{i\alpha})$ is a supra topological space.

Theorem 3.17. Let (X, τ) be a topological space and let *E* be a subset of *X*. Then $(E, \tau_E^{i\alpha})$ is supra compact if and only if for any $infra - \alpha - open$ cover Γ of E has a finite sub cover of E. **Proof.** Suppose is supra compact. Let E $\Gamma \subseteq I\alpha - O(X, \tau)$ such that $E \subset U\Gamma$. Let $\Gamma_E = \{ A I \ E : A \in \Gamma \}.$ $E = U\Gamma_F$ Then and $\Gamma_E \subseteq \tau_E^{i\alpha}$. By hypothesis there exists a finite subset $\Gamma_{E}^{*} = \{A_{i} I \ E : i = 1, 2, 3, ..., n\} \subseteq \Gamma_{E}$ such that $E = U \Gamma_{E^*}^*$ Then $\Gamma^* = \{A_i : i = 1, 2, 3, ..., n\} \subseteq \Gamma$ and $E \subset U\Gamma^*$.

Conversely, let $\Upsilon = \{A_i \mid E : i \in I\} \subseteq \tau_E^{i\alpha}$ such that $E = U\Upsilon$. Then $\Upsilon^* = \{A_i : i \in A\}$ is an *infra* – α – *open* covering of *E*. By hypothesis there exists $\Upsilon^{**} = \{A_i : i = 1, 2, 3, ..., n\}$ a finite subset of Υ^* such that $E \subseteq U\Upsilon^{**}$. Then

 $\Upsilon^{\#} = \{A_i \mid E : i = 1, 2, 3, ..., n\}$ is a finite subset of Υ such that $E = U \Upsilon^{\#}$. This proves that $(E, \tau_E^{i\alpha})$ is supra compact.

IV. COUNTABLY INFRA - α - COMPACT SPACES In this section, we present the concept of countably *infra* - α - *compactness* and its properties.

Definition 4.1. A topological space (X, τ) is said to be countably *infra*- α -*compact* if every countable *infra*- α -*open* cover of X has a finite sub cover.

Theorem 4.2. If (X, τ) is a countably *infra* – α – *compact* space, then (X, τ) is countably compact.

 (X, τ) **Proof**. Let be countably а infra – α – compact space. Let $\{A_i : i \in I\}$ be a countable open cover of $(X, \tau).$ Since $\tau \subseteq I\alpha - O(X, \tau)$. So $\{A_i : i \in I\}$ is a countable infra – α – open cover of (X, τ) . Since (X, τ) is countably *infra* – α – *compact*, therefore countable infra – α – open cover $\{A_i : i \in I\}$ of (X, τ) has a finite sub cover say $\{A_i : i = 1, 2, 3, \dots, n\}$ for X. Hence (X, τ) is a countably compact space.

Theorem 4.3. If (X, τ) is countably compact and every *infra*- α -*closed* subset of X is closed in X, then (X, τ) is countably *infra*- α -*compact*. **Proof.** Let (X, τ) be a countably compact space. Let $\{A_i : i \in I\}$ be a countable *infra*- α -*open* cover of (X, τ) . Since every *infra*- α -*closed* subset of X is closed in X. Thus every *infra*- α -*open* set in X is open in X. Therefore $\{A_i : i \in I\}$ is a countable open cover of (X, τ) . Since (X, τ) is countable compact, so countable open cover $\{A_i : i \in I\}$ of (X, τ) has a finite sub cover say $\{A_i : i = 1, 2, 3, ..., n\}$ for X. Hence (X, τ) is a countably *infra* – α – *compact* space.

Theorem 4.4. Every *infra* $-\alpha$ *-compact* space is countably *infra* $-\alpha$ *-compact*.

Proof. Let (X, τ) be an $infra - \alpha - compact$ space. Let $\{A_i : i \in I\}$ be a countable $infra - \alpha - open$ cover of (X, τ) . Since (X, τ) is $infra - \alpha - compact$, so $infra - \alpha - open$ cover $\{A_i : i \in I\}$ of (X, τ) has a finite sub cover say $\{A_i : i = 1, 2, 3, ..., n\}$ for (X, τ) . Hence (X, τ) is countably $infra - \alpha - compact$ space.

Theorem 4.5. Let $f:(X, \tau) \longrightarrow (Y, \sigma)$ be a *infra* $-\alpha$ *-continuous* onjective mapping. If X is countably *infra* $-\alpha$ *-compact* space, then (Y, σ) is countably compact.

 $f:(X,\tau)\longrightarrow(Y,\sigma)$ **Proof**. Let be an $infra - \alpha - continuous$ map from a countably $infra - \alpha - compact$ space (X, τ) onto topological space (Y, σ) . Let $\{A_i : i \in I\}$ be a countable open cover of Y. Then $\{f^{-1}(A_i): i \in I\}$ is a countable *infra* – α – *open* cover of X, as f is infra – α – continuous. Since X is countably infra – α – compact, the countable infra – α – open cover $\{f^{-1}(A_i): i \in I\}$ of X has a finite sub cover $\{f^{-1}(A_i): i=1,2,3,...,n\}.$ Therefore say $X = U\{f^{-1}(A_i): i = 1, 2, 3, ..., n\},$ which implies $Y = f(X) = U\{A_i : i = 1, 2, 3, ..., n\}.$ That is $\{A_i : i = 1, 2, 3, ..., n\}$ is a finite sub cover of $\{A_i : i \in I\}$ for Y. Hence Y is countably compact. Theorem 4.6. Suppose that а map $f:(X,\tau)\longrightarrow(Y,\sigma)$ is perfectly $infra - \alpha - continuous$ map from a countably compact space (X, τ) onto a topological space (Y, σ) . Then (Y, σ) is countably infra – α – compact.

Let $\{A_i: i \in I\}$ **Proof**. be countable a infra – α – open cover of (Y, σ) . Since t is perfectly infra – α – continuous, $\{f^{-1}(A_i): i \in I\}$ is a countable open cover of (Y, σ) . Again, since (X, τ) is countably *infra* – α – *compact*, the countable open cover $\{f^{-1}(A_i): i \in I\}$ of (X, τ) has a finite sub cover say $\{f^{-1}(A_i): i = 1, 2, 3, ..., n\}$. Therefore $X = U\{f^{-1}(A_i): i = 1, 2, 3, ..., n\}$, which $f(X) = U\{A_i : i = 1, 2, 3, ..., n\},$ so that implies $Y = U\{A_i : i = 1, 2, 3, ..., n\}$. That is $\{A_1, A_2, ..., A_n\}$ is a finite sub cover of $\{A_i : i \in I\}$ for (Y, σ) . Hence (Y, σ) is countably infra – α – compact.

Theorem 4.7. Suppose that а map $f:(X,\tau)\longrightarrow(Y,\sigma)$ is strongly *infra* – α – *continuous* map from a countably compact space (X, τ) onto a topological space (Y, σ) . Then (Y, σ) is countably infra – α – compact.

 $\{A_i: i \in I\}$ countable **Proof.** Let be a infra – α – open cover of (Y, σ) . Since t is strongly infra – α – continuous, $\{f^{-1}(A_i): i \in I\}$ is a countable open cover of (X, τ) . Again, since (X, τ) is countably compact, the countable supra open cover $\{f^{-1}(A_i): i \in I\}$ of (X, τ) has a finite sub cover say $\{f^{-1}(A_i): i = 1, 2, 3, ..., n\}$. Therefore $X = U\{f^{-1}(A_i): i = 1, 2, 3, ..., n\},$ which implies $f(X) = U\{A_i : i = 1, 2, 3, ..., n\},\$ that so $Y = U\{A_i : i = 1, 2, 3, ..., n\}$. That is $\{A_1, A_2, ..., A_n\}$ is a finite sub cover of $\{A_i : i \in I\}$ for (Y, σ) . Hence (Y, σ) is countably infra – α – compact. Theorem 4.8. The image of a countably $infra - \alpha - compact$ space under an

infra $-\alpha$ *- irresolute* map is countably *infra* $-\alpha$ *- compact*.

Proof. Suppose that a map $f:(X, \tau) \longrightarrow (Y, \sigma)$ is an *infra* $-\alpha$ *-irresolute* map from a countably $infra - \alpha - compact$ space (X, τ) onto а topological space (Y, σ) . Let $\{A_i : i \in I\}$ be a countable *infra* – α – *open* cover of (Y, σ) . Then $\{f^{-1}(A_i): i \in I\}$ is a countable *infra* – α – *open* cover of (X, τ) , since f is infra- α -irresolute. As (X, τ) is countably *infra* $-\alpha$ *-compact*, the countable $infra - \alpha - open$ cover $\{f^{-1}(A_i) : i \in I\}$ of (X, τ) has a finite sub cover say $\{f^{-1}(A_i): i = 1, 2, 3, ..., n\}$. Then it follows that $X = U\{f^{-1}(A_i): i = 1, 2, 3, ..., n\},$ which implies $f(X) = U\{A_i : i = 1, 2, 3, ..., n\},\$ so that $Y = U\{A_i : i = 1, 2, 3, ..., n\}$. That is $\{A_1, A_2, ..., A_n\}$ is a finite sub cover of $\{A_i : i \in I\}$ for (Y, σ) . Hence (Y, σ) is countably *infra* – α – *compact*.

Definition 4.9. Let (X, τ) be a topological space and $x \in X$. A point *x* is said to be *infra* $-\alpha$ *-limit* point of $A \subseteq X$ provided that every *infra* $-\alpha$ *-neighborhood* of *x* contains at least one point of *A* different from *x*.

Theorem 4.10. Every infinite subset of an *infra* $-\alpha$ *-compact* space has an *infra* $-\alpha$ *-limit* point.

Proof. Let A be an infinite subset of an infra – α – compact space (X, τ). Suppose that A has not an *infra* – α – *limit* point. Then for each $x \in X$, there exists an *infra*- α -open set G_x containing at most one point of A. Now, the collection $\Lambda = \{G_x : x \in X\}$ forms an $infra - \alpha - open$ Χ. cover of As X is *infra* – α – *compact*, then there exist x_1, x_2, \ldots, x_n in X such that $X = \bigcup_{i=1}^{i=n} G_{x_i}$. Therefore X has at most n points of A. This implies that A is finite.

But this contradicts that A is infinite. Thus A has an *infra* $-\alpha$ -*limit* point.

V. INFRA - α - LINDELÖF SPACES

In this section, we concentrate on the concept of $infra - \alpha - Lindel \ddot{o}f$ space and its properties.

Definition 5.1. A topological space (X, τ) is said to be *infra* $-\alpha$ *-Lindelöf* space if every *infra* $-\alpha$ *-open* cover of X has a countable sub cover.

Theorem 5.2. Every $infra - \alpha - Lindelöf$ space (X, τ) is *Lindelöf* space.

Proof. Let (X, τ) be an $infra - \alpha - Lindelöf$ space. Let $\{A_i : i \in I\}$ be an open cover of (X, τ) . Since $\tau \subseteq I\alpha - O(X, \tau)$. Therefore $\{A_i : i \in I\}$ is an $infra - \alpha - open$ cover of (X, τ) . Since (X, τ) is $infra - \alpha - Lindelöf$ space. So there exists a countable subset I_0 of I such that $\{A_i : i \in I_0\}$ is an $infra - \alpha - open$ sub cover of (X, τ) . Hence (X, τ) is a Lindelöf space.

Theorem 5.3. Every $infra - \alpha - compact$ space is $infra - \alpha - Lindelöf$.

Proof. Let (X, τ) be an $infra - \alpha - compact$ space. Let $\{A_i : i \in I\}$ be an $infra - \alpha - open$ cover of (X, τ) . Since (X, τ) is $infra - \alpha - compact$ space. Then $\{A_i : i \in I\}$ has a finite sub cover say $\{A_i : i = 1, 2, 3, ..., n\}$. Since every finite sub cover is always countable sub cover and therefore $\{A_i : i = 1, 2, 3, ..., n\}$. is countable sub cover of $\{A_i : i \in I\}$. Hence (X, τ) is $infra - \alpha - Lindelöf$ space.

Theorem 5.4. Every $infra - \alpha - closed$ subset of an $infra - \alpha - Lindelöf$ space is $infra - \alpha - Lindelöf$.

Proof. Let *F* be an *infra*- α -*closed* subset of *X* and $\{G_i : \not\in \}$ be *infra*- α -*open* cover of *F*. Then F^c is *infra*- α -*open* and $F \subseteq U\{G_i : i \in I\}$. Hence $X = (U\{G_i : i \in I\})UF^c$. Since *X* is $infra - \alpha - Lindel \ddot{o}f$, then $X = (U\{G_i : i \in I_0\}) UF^c$ for some countable subset I_0 of I. Therefore $F \subseteq U\{G_i : i \in I_0\}$. Thus F is $infra - \alpha - Lindel \ddot{o}f$. **Theorem 5.5.** Let A be an $infra - \alpha - Lindel \ddot{o}f$ subset of X and B be an $infra - \alpha - closed$ subset of X. Then AI B is $infra - \alpha - Lindel \ddot{o}f$.

Proof. Let $\{G_i : i \in I\}$ be an $infra - \alpha - open$ cover of AI B. Then $A \subseteq (\bigcup_{i \in I} G_i) \cup B^c$. Since A is $infra - \alpha - Lindelöf$, then there exists a countable subset I_0 of I such that $A \subseteq (\bigcup_{i \in I_0} G_i) \cup B^c$. Therefore AI $B \subseteq \bigcup_{i \in I_0} G_i$. Thus AI B is $infra - \alpha - Lindelöf$.

Theorem 5.6. A topological space (X, τ) is *infra* $-\alpha$ -*Lindelöf* if and only if every collection of *infra* $-\alpha$ -*closed* subsets of X satisfying the countable intersection property, has, itself, a non-empty intersection.

Necessity: Let $\Lambda = \{F_i : i \in I\}$ be a collection of *infra* $-\alpha$ -*closed* subsets of X which has the countable intersection property. Assume that $\mathbf{I}_{i\in I}F_i = \phi$. Then $X = \bigcup_{i\in I}F_i^c$. Since X is *infra* $-\alpha$ -*Lindelöf*, then there exists a countable subset I_0 of I such that $X = \bigcup_{i\in I_0}F_i^c$. Therefore, $\mathbf{I}_{i\in I_0}F_i = \phi$ contradicts that Λ has the countable intersection property. Thus Λ has, itself, a non-empty intersection.

Sufficiency: Let $\{G_i : i \in I\}$ be an $infra - \alpha - open$ cover of X. Suppose $\{G_i : i \in I\}$ has no countable sub cover. Then $X - \bigcup_{i \in J} G_i \neq \phi$, for any countable subset J of I. Now, $\prod_{i \in J} G_i^c \neq \phi$ implies that $\{G_i^c : i \in I\}$ is a collection of $infra - \alpha - closed$ closed subsets of X which has the countable intersection property. Therefore $\prod_{i \in I} G_i^c \neq \phi$. Thus $X \neq \bigcup_{i \in I} G_i$ contradicts that $\{G_i : i \in I\}$ is an $infra - \alpha - open$ cover of X. Hence X is $infra - \alpha - Lindelöf$.

Theorem 5.7. An *infra* $-\alpha$ *-continuous* image of an infra – α – Lindelöf space is a Lindelöf space. Proof. $f:(X,\tau)\longrightarrow(Y,\sigma)$ Let be an $infra - \alpha - continuous$ from map an $infra - \alpha - Lindelöf$ space X onto a topological space Y. Let $\{A_i : i \in I\}$ be an open cover of Y. Then $\{f^{-1}(A_i): i \in I\}$ is an *infra*- α -open cover of X, as f is infra $-\alpha$ -continuous. Since X is infra – α – Lindelöf space, the infra – α – open cover $\{f^{-1}(A_i): i \in I\}$ of X has a countable sub cover say $\{f^{-1}(A_i): i \in I_0\}$ for some countable set $I_0 \subseteq I$. Therefore $X = \bigcup \{ f^{-1}(A_i) : i \in I_0 \}$, which $f(X) = \mathrm{U}\{A_i : i \in I_0\},\$ implies then $Y = U\{A_i : i \in I_0\}$. That is $\{A_i : i \in I_0\}$ is a countable sub cover of $\{A_i : i \in I\}$ for Y. Hence (Y, σ) is a *Lindelöf* space.

Theorem 5.8. The image of an *infra* $-\alpha$ - *Lindelöf* space under an *infra* $-\alpha$ - *irresolue* map is *infra* $-\alpha$ - *Lindelöf* space.

Proof. Suppose that а map $f:(X,\tau)\longrightarrow(Y,\sigma)$ is an infra- α -irresolue map from an *infra* $-\alpha$ *-Lindelöf* space (X, τ) onto a topological space (Y, σ) . Let $\{B_i : i \in I\}$ be an *infra* $-\alpha$ *-open* cover of (Y, σ) . Since *t* is infra – α – irresolue. Therefore $\{f^{-1}(B_i): i \in I\}$ is an infra – α – open cover of (X, τ) . As (X, τ) is infra – α – Lindelöf space. the infra – α – open cover $\{f^{-1}(B_i): i \in I\}$ of (X, τ) has a countable sub cover say $\{f^{-1}(B_i): i \in I_0\}$ for some countable set $I_0 \subseteq I$. Therefore $X = \bigcup \{ f^{-1}(B_i) : i \in I_0 \},\$ which implies $f(X) = \bigcup \{B_i : i \in I_0\}$, so that $Y = U\{B_i : i \in I_0\}$. That is $\{B_i : i \in I_0\}$ a countable sub cover of $\{B_i : i \in I\}$ for Y. Hence (Y, σ) is an infra – α – Lindelöf space.

Theorem 5.9. If (X, τ) is $infra - \alpha - Lindelöf$ space and countably $infra - \alpha - compact$ space, then (X, τ) is $infra - \alpha - compact$ space.

Proof. Suppose (X, τ) is infra – α – Lindelöt space and countably *infra* – α – *compact* space. Let $\{A_i : i \in I\}$ be an *infra* – α – *open* cover of (X, τ) . Since (X, τ) is infra – α – Lindelöf space, has a countable sub cover say $\{A_i: i \in I\}$ for some countable set $I_0 \subseteq I$. $\{A_i: i \in I_0\}$ $\{A_i: i \in I_0\}$ Therefore is а countable infra – α – open cover of (X, τ) . Again, since (X, τ) is countably *infra* – α – *compact* space, $\{A_i : i \in I_0\}$ has a finite sub cover and say $\{A_i : i = 1, 2, 3, ..., n\}$. Therefore $\{A_i : i = 1, 2, 3, ..., n\}$ is a finite sub cover of $\{A_i : i \in I\}$ for (X, τ) . Hence (X, τ) is an *infra* – α – *compact* space.

Theorem 5.10. If a function $f:(X,\tau) \longrightarrow (Y,\sigma)$ is *infra* $-\alpha$ -*irresolue* and a subset A of X is *infra* $-\alpha$ -*Lindelöf* relative to X, then f(A) is *infra* $-\alpha$ -*Lindelöf* relative to Y.

Proof. Let $\{B_i : i \in I\}$ be a cover of f(A) by $infra - \alpha - open$ subsets of Y. By hypothesis f is $infra - \alpha - irresolue$ and so $\{f^{-1}(B_i) : i \in I\}$ is a cover of A by $infra - \alpha - open$ subsets of X. Since A is $infra - \alpha - Lindelöf$ relative to X, $\{f^{-1}(B_i) : i \in I\}$ has a countable sub cover say $\{f^{-1}(B_i) : i \in I_0\}$ for A, where I_0 is a countable subset of I. Now $\{B_i : i \in I_0\}$ is a countable sub cover of $\{B_i : i \in I\}$ for f(A). So f(A) is $infra - \alpha - Lindelöf$ relative to Y.

VI. ALMOST INFRA -α -COMPACT SPACES

Definition 6.1. A topological space (X, τ) is called almost *infra*- α -*compact* (*infra*- α -*Lindelöf*) provided that every *infra*- α -*open* cover of X has a finite (countable) sub collection, the *infra*- α -*closure* of whose members cover X.

The proofs of the following four propositions are straightforward and therefore will be omitted.

Proposition 6.2. Every almost $infra - \alpha - compact$ space is almost $infra - \alpha - Lindelöf$ space.

Proposition 6.3. Every $infra - \alpha - compact$ space $(infra - \alpha - Lindelöf space)$ is almost $infra - \alpha - compact$ (almost $infra - \alpha - Lindelöf$).

Proposition 6.4. Any finite (countable) topological space (X, τ) is almost *infra* – α – *compact* (*almost infra* – α – *Lindelöf*).

Proposition 6.5. A finite (countable) union of almost *infra* – α – *compact* (*almost infra* – α – *Lindelöf*) subsets of (X, τ) is almost *infra* – α – *compact* (*almost infra* – α – *Lindelöf*).

Definition 6.6. A subset *E* of (X, τ) is called *infra* $-\alpha$ *-clopen* provided that it is *infra* $-\alpha$ *-open* and *infra* $-\alpha$ *-closed*.

Theorem 6.7. Let *F* be an $infra - \alpha - clopen$ subset of an almost $infra - \alpha - compact$ $(almost infra - \alpha - Lindelöf)$ space (X, τ) . Then *F* is almost $infra - \alpha - compact$ $(almost infra - \alpha - Lindelöf)$.

Proof. Let F be an *infra* $-\alpha$ *-clopen* subset of $infra - \alpha - compact$ space X an almost and $\{G_i : i \in I\}$ be an *infra* – α – open cover of F. Then F^{c} is $infra - \alpha - open$ and $X \subseteq (U\{G_i : i \in I\}) \cup F^c$. Since X is almost *infra* – α – *compact*, then there exists a finite subset I_0 of I such that $X = \left(U \{ I\alpha - Cl(G_i) : i \in I_0 \} \right) U F^c.$ Thus it follows that $F \subseteq U \{ I\alpha - Cl(G_i) : i \in I_0 \}.$ Hence F is almost *infra* - α - *compact*.

The proof is similar in case of almost $infra - \alpha - Lindel \ddot{o}f$.

Theorem 6.8. If almost Α is an infra – α – compact (almost infra – α – Lindelöf) subset of (X, τ) and B is an infra- α -clopen then AI B subset of Χ. is almost infra – α – compact (almost infra – α – Lindelöf).

Proof. Let $\Lambda = \{G_i : i \in I\}$ be an $infra - \alpha - open$ cover of AI B. Then $A \subseteq (\bigcup\{G_i : i \in I\}) \bigcup B^c$. Since A is almost $infra - \alpha - compact$, then there exists a finite subset I_0 of I such that $A \subseteq (\bigcup\{I\alpha - Cl(G_i) : i \in I_0\}) \bigcup B^c$. Therefore AI $B \subseteq \bigcup\{I\alpha - Cl(G_i) : i \in I_0\}$. Thus AI B is almost $infra - \alpha - compact$.

The proof is similar in case of almost $infra - \alpha - Lindelöf$. **Theorem 6.9.** Let a map $f:(X, \tau) \longrightarrow (Y, \sigma)$ be *infra* $-\alpha$ *-irresolute*. Suppose that A is almost $infra - \alpha - compact$ (almost $infra - \alpha - Lindelöf$) f(A)subset of Χ. Then is almost infra – α – compact (almost infra – α – Lindelöf). **Proof.** Suppose that $\{G_i : i \in I\}$ is *infra* – α – *open* cover of f(A). Then $f(A) \subseteq U\{G_i : i \in I\}$. Now, $A \subseteq \mathrm{U}\big\{f^{-1}(G_i) : i \in I\big\}.$ Since is infra – α – irresolute, then $\{f^{-1}(G_i): i \in I\}$ is an infra – α – open cover of A. By hypothesis, A is almost infra – α – compact, then there exists a finite subset I_0 of 1 such that $A \subseteq \mathbf{U} \Big\{ I\alpha - Cl \Big[f^{-1}(G_i) \Big] : i \in I_0 \Big\}.$ Since f is infra – α – irresolute, then $I\alpha - Cl(f^{-1}(G_i)) \subseteq$ $f^{-1}[I\alpha - Cl(G_i)]$, for all $i \in I_0$. Hence it follows

that $f(A) \subseteq \bigcup_{i \in I_0} f \lfloor f^{-1} (I\alpha - Cl(G_i)) \rfloor \subseteq \bigcup_{i \in I_0} I\alpha - Cl(G_i)$, which implies that $f(A) \subseteq \bigcup_{i \in I_0} I\alpha - Cl(G_i)$. Thus f(A) is almost infra $-\alpha$ - compact.

The proof is similar in case of almost $infra - \alpha - Lindel\ddot{o}f$.

Theorem 6.10. Let $f:(X, \tau) \longrightarrow (Y, \sigma)$ be an *infra* $-\alpha$ *- open* bijective map and (Y, σ) is almost *infra* $-\alpha$ *- compact*. Then (X, τ) is almost compact.

Proof. Let $\{G_i : i \in I\}$ be an open cover of X. Then $f(X) = f(\bigcup_{i \in I} G_i)$. Therefore $Y = \bigcup_{i \in I} f(G_i)$. Now, Y is almost *infra* – α – *compact*, then there exists a finite subset I_0 of I such that $Y = \bigcup_{i \in I_{\alpha}} I\alpha - Cl | f(G_i) |.$ Since is *infra* – α – *open* bijective map, then f is $infra - \alpha - closed$ map. Therefore, we have $I\alpha - Cl | f(G_i) | \subseteq f | Cl(G_i) |$, for all $i \in I_0$. Thus $Y \subseteq \bigcup_{i \in I_0} f | Cl(G_i) | \subseteq f | \bigcup_{i \in I_0} Cl(G_i) |,$ which implies that $X = f^{-1}(Y) \subseteq \bigcup_{i \in I_0} Cl(G_i)$. Thus $X = \bigcup_{i \in I_0} Cl(G_i)$. Hence X is almost compact.

Theorem 6.11. If every collection of infra – α – closed subsets of (X, τ) , satisfying the finite (countable) intersection property, has, itself, a non-empty intersection, then X almost is infra – α – compact (almost infra – α – Lindelöf). **Proof.** Let $\{G_i : i \in I\}$ be an *infra* $-\alpha$ *-open* cover of X. Suppose $\{G_i : i \in I\}$ has no finite subcollection such that the *infra* – α – *closure* of whose members cover Χ. Then $X - \bigcup_{i=1}^{i=n} I\alpha - Cl(G_i) \neq \phi$, for any $n \in N$. Therefore $X - \bigcup_{i=1}^{i=n} G_i \neq \phi.$ Now, $\prod_{i=1}^{n} G_i^c \neq \phi$ implies $\{G_i^c: i \in I\}$ is a collection of *infra*- α -closed subsets of X which has the finite intersection property. Thus $\prod_{i \in I} G_i^c \neq \phi$ implies $X \neq \bigcup_{i \in I} G_i$.

But this is a contradiction. Hence X is almost *infra* $-\alpha$ -*compact*.

A similar proof is given in a case of *almost infra* – α – *Lindelöf*.

VII. MILDLY INFRA - α -COMPACT SPACES

Definition 7.1. A topological space (X, τ) is called mildly *infra* – α – *compact* (*mildly infra* – α – *Lindelöf*) provided that every *infra* – α – *clopen* cover of X has a finite (countable) sub cover.

Theorem 7.2. Every mildly $infra - \alpha - compact$ space is mildly $infra - \alpha - Lindelöf$.

Proof. It is straight forward.

Theorem 7.3. Every almost $infra - \alpha - compact$ (almost $infra - \alpha - Lindelöf$) space (X, τ) is mildly $infra - \alpha - compact$ (mildly $infra - \alpha - Lindelöf$).

 $\Lambda = \{H_i : i \in I\}$ **Proof**. Let be an infra – α – clopen cover of (X, τ) . Since (X, τ) is almost *infra* $-\alpha$ *-compact*, then there exists a finite subset I_0 such of 1 that $X = \bigcup_{i \in I_{\alpha}} I\alpha - Cl(H_i). \text{ Now, } I\alpha - Cl(H_i) = H_i.$ Thus (X, τ) is mildly infra – α – compact.

A similar proof is given when (X, τ) is almost infra $-\alpha$ – Lindelöf.

Corollary 7.4. Every $infra - \alpha - compact$ $(infra - \alpha - Lindelöf)$ space mildly is infra – α – compact (mildly infra – α – Lindelöf). **Theorem 7.5.** If F is an infra $-\alpha$ - clopen subset of mildly $infra - \alpha - compact$ а (mildly infra – α – Lindelöf) space X, then F is mildly $infra - \alpha - compact$ $(m i l d l - \gamma \alpha - i n)$ Lindelöf). **Proof.** Let F be an *infra* $-\alpha$ *-clopen* subset of X and $\{G_i : i \in I\}$ be an *infra* – α – *clopen* cover

of F. Then F^c is an infra- α -clopen and

 $F \subseteq \bigcup_{i \in I} G_i$. Therefore $X = (\bigcup_{i \in I} G_i) \cup F^c$. Since *X* is mildly *infra* – α – *compact*, then there exists a finite subset I_0 of *I* such that $X = (\bigcup_{i \in I_0} G_i) \cup F^c$. So $F \subseteq (\bigcup_{i \in I_0} G_i)$. Hence *F* is mildly *infra* – α – *compact*.

The proof is similar in a case of mildly $infra - \alpha - Lindel\ddot{o}f$.

Theorem 7.6. If A is a mildly $infra - \alpha - compact$ (mildly $infra - \alpha - Lindelöf$) subset of X and B is an $infra - \alpha - clopen$ subset of X, then AI B is mildly $infra - \alpha - compact$ (mildly $infra - \alpha - Lindelöf$).

Proof. Let $\Lambda = \{G_i : i \in I\}$ be an *infra* $-\alpha$ *-clopen* cover of AI B. Then $A \subseteq (\bigcup_{i \in I} G_i) \cup B^c$. Since A is mildly *infra* $-\alpha$ *-compact*, then there exists a finite subset I_0 of I such that $A \subseteq (\bigcup_{i \in I_0} G_i) \cup B^c$. Therefore AI $B \subseteq \bigcup_{i \in I_0} G_i$. Thus AI B is mildly *infra* $-\alpha$ *-compact*.

The proof is similar in case of mildly $infra - \alpha - Lindel\ddot{o}f$.

Theorem 7.7. If $f:(X, \tau) \longrightarrow (Y, \sigma)$ is an *infra* $-\alpha$ -*open* bijective map and (Y, σ) is mildly *infra* $-\alpha$ -*compact*, then (X, τ) is mildly compact.

Proof. Let $\{G_i : i \in I\}$ be a clopen cover for X. Then $f(X) = f(\bigcup_{i \in I} G_i)$. Hence $Y = \bigcup_{i \in I} f(G_i)$. Since f is *infra*- α -*open* bijective map, then f is *infra*- α -*closed*. Therefore $\{f(G_i) : i \in I\}$ is an *infra*- α -*clopen* cover of X. Since Y is mildly *infra*- α -*compact*, then there exists a finite subset I_0 of I such that $Y = \bigcup_{i \in I_0} f(G_i)$. Therefore $X = \bigcup_{i \in I_0} G_i$. Thus X is mildly compact.

Proposition 7.8. A subset A of (X, τ) is mildly compact (*mildly Lindelöf*) if and only if (X, τ_A) is mildly compact (*mildly Lindelöf*).

VIII. INFRA - α - CONNECTED SPACES

Definition 8.1. A topological space (X, τ) is said to be connected if *X* cannot be written as a disjoint union of two non empty open sets. A subset of (X, τ) is connected if it is connected as a subspace.

Definition 8.2. A topological space (X, τ) is said to be *infra* $-\alpha$ *-connected* if X cannot be written as a disjoint union of two non empty *infra* $-\alpha$ *-open* sets. A subset of (X, τ) is *infra* $-\alpha$ *-connected* if it is *infra* $-\alpha$ *-connected* as a subspace.

Theorem 8.3. Every *infra* $-\alpha$ *-connected* space (X, τ) is connected.

Proof. Let *A* and *B* be two non empty disjoint proper open sets in *X*. Since every open set is *infra*- α -*open* set. Therefore *A* and *B* are non empty disjoint proper *infra*- α -*open* sets in *X* and *X* is *infra*- α -*connected* space. Hence $X \neq A \cup B$. Therefore *X* is *infra*- α -*connected*.

Theorem 8.4. Let (X, τ) be a topological space. Then the following statements are equivalent

 $(i)(X, \tau)$ is infra – α – connected.

(*ii*) The only subsets of (X, τ) which are both *infra* $-\alpha$ *-open* and *infra* $-\alpha$ *-closed* are the empty set ϕ and X.

(iii) Each infra $-\alpha$ - continuous map of (X, τ) into a discrete space (Y, σ) with at least two points is a constant map.

Proof. $(i) \Rightarrow (ii)$: Let G be a non empty proper infra- α -open and infra- α -closed subset of (X, τ) . Then X-G is also both infra- α -open and infra- α -closed. Then X = GU(X-G) is a disjoint union of two non empty infra- α -open sets, which contradicts the fact that (X, τ) is infra- α -connected. Hence G = ϕ or G = X.

 $(ii) \Rightarrow (i)$: Suppose that $X = A \cup B$ where A and B are disjoint non empty infra – α – open subsets (X, τ) . Since A = X - B, then A is both of $infra - \alpha - open$ and infra – α – closed. By A = X, which assumption $A = \phi$ or is а (X, τ) contradiction. Hence is infra – α – connected.

 $(ii) \Rightarrow (iii)$: Let $f: (X, \tau) \longrightarrow (Y, \sigma)$ be an infra – α – continuous map, where (Y, σ) is discrete space with at least two points. Then $f^{-1}(y)$ is infra- α -closed and infra- α -open for each $y \in Y$. Thus (X, τ) is covered by infra – α – closed and infra – α – open covering $\{f^{-1}(y): y \in Y\}$. By assumption, $f^{-1}(y) = \phi$ or $f^{-1}(y) = X$ for each $y \in Y$. If $f^{-1}(y) = \phi$ for each $y \in Y$, then *f* fails to be a map. Therefore their exists at least one point say $y^* \in Y$ such that $f^{-1}(\lbrace y^* \rbrace) \neq \phi$. Since $f^{-1}(\lbrace y^* \rbrace)$ is also both *infra* – α – *open* and $infra - \alpha - closed$ set. Therefore by hypothesis $f^{-1}(\{y^*\}) = X$. This shows that *t* is a constant map.

(iii) \Rightarrow (ii): Let G be both $infra - \alpha - open$ and $infra - \alpha - closed$ set in (X, τ) . Suppose $G \neq \phi$. Let $f: (X, \tau) \longrightarrow (Y, \sigma)$ be an $infra - \alpha - continuous$ map defined by $f(G) = \{a\}$ and $f(X-G) = \{b\}$ where $a \neq b$ and $a, b \in Y$. By assumption, f is constant so G = X.

Theorem 8.5. If $f:(X, \tau) \longrightarrow (Y, \sigma)$ is an *infra* $-\alpha$ *-continuous* surjection and (X, τ) is *infra* $-\alpha$ *-connected*, then (Y, σ) is connected.

Proof. Suppose (Y, σ) is not connected. Let $Y = A \cup B$, where *A* and *B* are disjoint non empty open subsets of (Y, σ) . Since *f* is *infra*- α -*continuous*, $X = f^{-1}(A) \cup f^{-1}(B)$, where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint non empty

 $infra - \alpha - open$ subsets of X. This disproves the fact that (X, τ) is $infra - \alpha - connected$. Hence (Y, σ) is connected.

Theorem 8.6. If $f:(X, \tau) \longrightarrow (Y, \sigma)$ is an *infra* $-\alpha$ *-irresolute* surjection and X is *infra* $-\alpha$ *-connected*, then Y is *infra* $-\alpha$ *-connected*.

Proof. Suppose that is Y not infra – α – connected. Let $Y = A \cup B$, where A and B are disjoint non empty infra – α – open sets in Y. Since f is infra- α -irresolute map and onto, $X = f^{-1}(A) \cup f^{-1}(B)$, where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint non empty *infra* – α – open sets in (X, τ) . This contradicts the fact that (X, τ) is (Y, σ) infra – α – connected. Hence is infra – α – connected.

Theorem 8.7. If every $infra - \alpha - closed$ set in X is closed in X and X is connected, then X is *infra* - α - *connected*.

Proof. Suppose that X is connected. Then X cannot be expressed as disjoint union of two nonempty proper open subset of X. Let X be not *infra* $-\alpha$ -*connected* space. Let A and B be any two non empty *infra* $-\alpha$ -*open* subsets of X such that $X = A \cup B$, where AI $B = \phi$. Since every *infra* $-\alpha$ -*closed* set in X is closed in X. Therefore every *infra* $-\alpha$ -*open* set in X is open in X. Hence A and B are open subsets of X, which contradicts that X is connected. Therefore X is *infra* $-\alpha$ -*connected*.

Theorem 8.8. Every $infra - \alpha - connected$ space (X, τ) is mildly $infra - \alpha - compact$.

Proof. Since (X, τ) is *infra* $-\alpha$ *-connected*, then the only *infra* $-\alpha$ *-clopen* subsets of (X, τ) are X and ϕ . Therefore (X, τ) is mildly *infra* $-\alpha$ *-compact*.

Theorem 8.9. If two *infra* $-\alpha$ *-open* sets *C* and *D* form a separation of *X* and if *Y* is

infra – α – connected subspace of X, then Y lies entirely within C or D.

Proof. By hypothesis C and D are both *infra* $-\alpha$ *-open* sets in X. The sets CI Y and DI Y are *infra* $-\alpha$ *-open* in Y, these two sets are disjoint and their union is Y. If they were both non empty, they would constitute a separation of Y. Therefore, one of them is empty. Hence Y must lie entirely in C or D.

Theorem 8.10. Let A be an $infra - \alpha$ - connected subspace of X. If $A \subseteq B \subseteq I\alpha - Cl(A)$, then B is also $infra - \alpha$ - connected.

Proof. Let A be $infra - \alpha - connected$. Let $A \subseteq B \subseteq I\alpha - Cl(A)$. Suppose that B = CUD is a separation of B by $infra - \alpha - open$ sets. Thus by previous theorem A must lie entirely in C or D. Suppose that $A \subseteq C$, then it implies that $I\alpha - Cl(A) \subseteq I\alpha - Cl(C)$. Since $I\alpha - Cl(C)$ and D are disjoint, B cannot intersect D. This disproves the fact that D is non empty subset of B So $D = \phi$ which implies B is $infra - \alpha - connected$.

IX. CONCLUSIONS

We have used $infra - \alpha$ - open sets to introduce the new concepts of notions in topological spaces namely $infra - \alpha$ - compact space, countably $infra - \alpha$ - compact space, $infra - \alpha$ - Lindelöf space, almost $infra - \alpha$ - compact space, mildly $infra - \alpha$ - compact space and $infra - \alpha$ - connected space and have investigated several properties and characterization of these new concepts.

ACKNOWLEDGEMENT

The author is highly and gratefully indebted to Prince Mohammad Bin Fahd University, Saudi Arabia, for providing research facilities during the preparation of this research paper.

REFERENCES

- [1]. Ghufran A. Abbas and Taha H. Jasim, On Supra α – Compactness in Supra Topological Spaces, Tikrit Journal of Pure Science, Vol. 24(2) (2019), 91 – 97.
- [2]. Baravan A. Asaad and Alias B. Khalaf, On P_s-Compact Space, International Journal Scientific & Engineering Research, Volume 7, Issue 8, August 2016, 809 – 815.
- [3]. S. Balasubramanian, C. Sandhya and P.A.S. Vyjayanthi, On ν -Compact spaces, Scientia Magna, 5(1) (2009), 78-82.
- [4]. Miguel Caldas, Saeid Jafari, and Raja M. Latif, b-Open Sets and A New Class of Functions, Pro Mathematica, Peru, Vol. 23, No. 45 – 46, pp. 155 – 174, (2009).
- [5]. R. Devi, S. Sampathkumar and M. Caldas, On supra α -open sets and S-continuous maps, General Mathematics, 16 (2), (2008), 77 84.
- [6]. W. Dunham, A New Closure Operator for non T1 topology, Kyuungpook Math. J., 22(1982), pp. 55 -60.
- [7]. H. Z. Hdeib, ω-closed mappings, Rev. Colomb. Mat., 16 (1-2) (1982), 65–78.
- [8]. K. Krishnaveni and M. Vigneshwaran, Some Stronger forms of supra $bT\mu$ continuous function, Int. J. Mat. Stat. Inv., 1(2), (2013), 84 87.
- [9]. K. Krishnaveni, M. Vigneshwaran, bTμcompactness and bTμ - connectedness in supra topological spaces, European Journal of Pure and Applied Mathematics, Vol. 10, No. 2, 2017, 323 – 334 ISSN 1307-5543 – www.ejpam.com.
- [10]. N. Levine, Semi-open sets and semicontinuity in topological spaces, Amer. Math. Monthly, 70(1963), 36 - 41.
- [11]. A. S. Mashhour, M. E. Abd El-Monsefand S. N. El-Deed, On Precontinuous and weak precontinuous Mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), pp. 47 – 53.
- [12]. A. S. Mashhour, A. A. Allam, F. S. Mohamoud and F. H. Khedr, On supra topological spaces, Indian J. Pure and Appl. Math., No.4, 14(1983), 502 – 510.
- [13]. S. Pious Missier and P. Anbarasi Rodrigo, Some Notions of Nearly Open Sets in Topological Spaces, Intenational Journal of Mathematical Archive, 4(12) (2013) 12 – 18.
- [14]. Jamal M. Mustafa, supra b-compact and supra b-Lindelöf spaces, Journal of

Mathematics and Applications, No36, (2013), 79-83.

- [15]. O. Njastad, Some Classes of Nearly Open sets, Pacific J. Math., 15(3)(1965), pp. 961 - 970.
- [16]. T. Noiri and O. R. Sayed, On Ω closed sets and Ω s closed sets in topological spaces, Acta Math, 4(2005), 307 318.
- [17]. Hakeem A. Othman and Md. Hanif Page, On an Infra $-\alpha$ -Open Sets, Global Journal of Mathematical Analysis, 4(3) (2016) 12-16.
- [18]. P. G. Patil, w compactness and w connectedness in topological spaces, Thai. J. Mat., (12), (2014), 499 - 507.
- [19]. A. Robert and S. Pious Missier, On Semi*-Connected and Semi*-Compact Spaces, International Journal of Modern Engineering Research, Vol. 2, Issue 4, July – Aug. 2012, pp. 2852 – 2856.
- [20]. A. Robert and S. Pious Missier, A New Class of Nearly Open Sets, Intenational Journal of Mathematical Archive, 3(7) (2012) 2575 – 2582.
- [21]. O. R. Sayed, Takashi Noiri, On supra b
 open set and supra b continuity on topological spaces, European Journal of pure and applied Mathematics, 3(2) (2010), 295 302.
- [22]. O. R. Sayed and T. Noiri, Supra birresoluteness and supra b-compactness on

topological space, Kyungpook Math. J., 53(2013), 341 – 348.

- [23]. T. Selvi and A. Punitha Dharani, Some new class of nearly closed and open sets, Asian Journal of Current Engineering and Maths, 1:5 SepOct (2012) 305 – 307.
- [24]. L. A. Steen and J. A. Seebach Jr, Counterexamples in Topology, Holt, Rinenhart and Winston, New York 1970.
- [25]. N. V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl., 78(2) (1968), 103 – 118.
- [26]. L. Vidyarani and M. Vigneshwaran, On Supra N-closed and sN-closed sets in Supra Topological Spaces, International Journal of Mathematical Achieve, Vol-4, Issue-2, (2013), 255 – 259.
- [27]. L. Vidyarani and M. Vigneshwaran, Some forms of N-closed maps in supra Topological spaces, IOSR Journal of Mathematics, Vol-6, Issue-4, (2013), 13 – 17.
- [28]. Albert Wilansky, Topology for Analysis, Devore Polications, Inc, Mineola New York. (1980).
- [29]. Stephen Willard, General Topology, Reading, Mass.: Addison Wesley Pub. Co. (1970).
- [30]. Stephen Willard and Raja M. Latif, Semi-Open Sets and Regularly Closed Sets in Compact Metric Spaces, Mathematica Japonica, Vol. 46, No.1, (1997), 157 – 161.

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative Commons Attribution License 4.0 <u>https://creativecommons.org/licenses/by/4.0/deed.en_US</u>